
Magnolia APIs
Magnolia provides both Java APIs, REST APIs and Definitions for Dialogs, Components etc. This page summarizes the ideas, thoughts and best practices
around the Magnolia APIs. The intention is to let developers know about the APIs that are safe to use, and to indicate the internal codebase that are
subject to change without notice.

This document is applicable to Magnolia 5.6 and later.

General intention
We want to declare our opinion about what code should be used and extended as explicit as possible. Ideally in a way that leaves no space for mistakes
through neglect and a very easy way to validate for compliance. Having said that, there is no intention to either hide internal code nor make it impossible to
use. If you have a very unique use case and are aware of the implications when using our internal code you should be able to do so.

The reason why we want to have that boundary between internal code and users is, to keep our internal code flexible so we can innovate quickly without
impact on current users. Ideally internal code only consists of code no customers is using anyway, but with making it explicitly internal code we have two
huge benefits: We can change it as quickly and heavily as we want without being afraid of potentially breaking a promise to our customers AND we don't
spend a lot of effort keeping that code backwards compatible for nobody. Depending on how near that ideal is to reality the transition phase will be shorter
or longer.

Best practices
Usually we should consider the following list as potential part of the public API:

Definitions (by all of them are public, maybe not all of them are directly accessible but thought the {{*2Bean}} mapping they are directly definition
exposed)
Actions
Models
Everything exposed through a RESTful service

The following list contains candidates to be usually considered private:

Data bindings
Pluming code in general
Code of custom Vaadin components

The API Artifacts/Sub-Modules
If possible the API classes and interfaces of a Magnolia Module should be separated into a submodule (e.g.). That module should magnolia-dam-api

have no dependencies on other internal submodules but be dependent on by all others. API artifacts should always be postfixed as .-api

Disclaimer

With 5.6 we are actually still in the exploration phase and nothing is either set in stone nor considered the definitive approach for the future.
Please consider that when you give the very welcome feedback.

Example needed

Annotations
There is a distinction between different types of API indicated by the presence of different annotations. For the moment we are only using {{@PublicApi}}
but others are conceivable like for SPI or experimental APIs.

@PublicApi
API includes interfaces and classes that Magnolia modules need to use to get things done. Modules can safely use there and we will guarantee binary
compatibility. This is true as well if you extend or implement these classes if possible.

@PublicSpi

@Experimental

Compatibility Policy

Deprecation Policy
Methods or types that are deprecated will have the annotation and according Javadoc comment.@deprecated

The Javadoc will explain how to replace the usage and list the module version in which it was set to deprecated.

APIs marked as deprecated will continue to work in the following minor releases, but will be potentially removed in the next major release.

Further Information
see the following concept which outlines several steps beyond public APIsConcept - Open Closed Code Space
As an example have a look at the API documentation from Atlassian ()https://developer.atlassian.com/jiradev/jira-apis/java-api-policy-for-jira
Presentation about Public API

Open Points / TBD
Concrete examples for module structure

Concrete examples for annotations

Example code for Annotations needed

https://wiki.magnolia-cms.com/display/DEV/Concept+-+Open+Closed+Code+Space
https://developer.atlassian.com/jiradev/jira-apis/java-api-policy-for-jira
https://wiki.magnolia-cms.com/download/attachments/143917754/public-api_2017-11-27_small.key?version=1&modificationDate=1512637070000&api=v2

Define policies with clear explanation how releases (both magnolia & module) related to deprecation and removal of APIs (see https://developer.
 as an example)atlassian.com/jiradev/jira-apis/java-api-policy-for-jira

Explain good practices to extract public api on existing codebase

Describe common pitfalls and how to avoid them

Outline process to validate API consistency during development

Outline process to assess public API compliancy in customer projects

https://developer.atlassian.com/jiradev/jira-apis/java-api-policy-for-jira
https://developer.atlassian.com/jiradev/jira-apis/java-api-policy-for-jira

	Magnolia APIs

