
Concept - Property Transformer

Introduction
Basic Concept
Configuration
Default behavior

Basic Field
Composite Fields

CompositeField
SwitchableField

Multi-Value Field
MultiField

i18n
Default Value

Implemented
Property
Implemented Transformer

BasicTransformer
CompositeTransformer

NoOpCompositeTransformer
MultiTransformer

MultiValueTransformer
MultiValueJSONTransformer
MultiValueChildrenNodeTransformer
MultiValueSubChildrenNodePropertiesTransformer
MultiValueSubChildrenNodeTransformer

Introduction
Magnolia 5.1 introduce a new way to handle properties bound to a dialog field. Until Magnolia 5.1 the only way to modify the default behavior (a field is
bound to a simple property) was to override the method. FieldBuilder.getOrCreateProperty(..

Now by configuration we have the possibility to define custom way to read and write a value or values from a property linked to a field. This is us full for
complex fields like or that needs more than one simple property bound to them.MultiValueField CompositeField

Basic Concept
A is linked to a used to store the field value. This :Field Property Property

is set by the based on the passed .FieldBuilder Item

has a name and a value.
name of the property is generally the name used to store the property
value contains the user input.

In other words a field has a property, this property has a value.

The field property is normally simply linked to an Item property. Let's take a simple example. Assume that we have a Form displaying five fields. The
following schema display the Jcr representation , his equivalent Item representation (used in Magnolia UI and also to build the form) and the form (1) (2)
view .(3)

A form is build by the form builder using the Item . Each individual form field are build by the field builder. This builder used the field definition (that (2)
contains the field class, name,...) and the related item property to create an individual field.
In the previous example, the field definition says that we have to create a field of type Text that has a value coming from a property called 'firstName'. (2.1)
The field builder, request from the Item the property 'firstName'. It create a text field, a new property set as property datasource of the field, and (2)
associate the value of to this property datasource .(2.1) (3.1)

 The transformation dome between and is performed by the Actions (Open Dialog action and Save Dialog action). (1) (2) All changes done in the item (2)
 (adding/removing/changing a property, or adding a sub item,)will be propagated to the Jcr structure once a user click to the save button

 Until Magnolia 5.1, the transformation between and was a 1:1 translation, meaning that the individual fields where directly accessing the Item. (2) (3)
Now Magnolia 5.1 introduce a new layer between and allowing to perform complexer mapping. This layer is called .(2) (3) Transformer

Assume that we have a new requirement regarding our form example: The Item stay the same, but the form should only display one text field (2)
containing the full name (first and last name) . This is now possible by defining a property on the Field Definition: TransformerClass

In this case, the field builder will create a as field property datasource. This delegate to the TransformedProperty TransformedProperty Transfor

 the get and set value field calls.mer

Another good example for illustrating the behavior is the The the related field can no more be a simple Transformer MultiValueField. Property Pr

 but rather a complex property containing several values. This property is a (a containing several).operty PropertysetItemt Property Property

The previous mockup display a Date multi value field . This field is associated to a that contains the individual Date . (3) PropertysetItemt Property

This property delegate the read and write to a This knows how to read and write the individual Date from Transformer (1) Transformer Property

and to the related form item. In this example the is bound to an Item property of type list. This introduce another big advantage of the Transformer Trans

's. For the same field it is possible to define several read/write strategy: former

Store the field values into a single array, or into sub items, ...

Configuration
This configurations are done in the common fields Properties.

Property Description Default
value

Valid
values

transformerClass Concrete implementation of . info.magnolia.ui.form.field.transformer.Transformer<T>

Optional.
If not defined, is info.magnolia.ui.form.field.transformer.basic.BasicTransformer<T>

used.
 ComplexeFieldDefinition may define default in their constructor.Transformer

Default behavior

Basic Field

By default, basic fields (Textm Date, Checkbox,...) uses .BasicTransformer

The field is created based on the related form . will:Item BasicTransformer

Retrieve the if this already exist on the .Item.property property Item

 is search based on the Field name defined as name property on the field definition. property

Create the if this do not yet exist on the .Item.property property Item

 is created based on the following field definition:property

type: will get the desired property type

defaultValue: if define, the string representation of the default field value is converted to a new typed value.

Composite Fields

Composite () are used by the following fields:Transformer CompositeTransformer SwitchableTransformer

CompositeField

SwitchableField

CompositeField

This field use by default the . This will store each single field part of the as single suffixed CompositeTransformer Transformer CompositeField

property.
Assume that your is called ' ' and contains two fields: a text field called ' ' and a date field called ' '. CompositeField composite simpleText simpleDate
The values will be stored as following:

Node name Value

 compositesimpleText some text value

 compositesimpleDate 2006-05-01T21:47:58.230+02:00

SwitchableField

This field used by default the . This will store each single field part of the as single SwitchableTransformer Transformer SwitchableField

suffixed property.
Assume that your is called ' ' and contains two fields: a text field called ' ' and a date field called ' '. SwitchableField switchable simpleText simpleDate
The values will be stored as following:

Node name Value

 switchable text (last tab selected)

 switchablesimpleText some text value

 switchablesimpleDate 2006-05-01T21:47:58.230+02:00

Multi-Value Field

Multi-Value are used by the following field:Transformer

MultiField

MultiField

This field is by default bound with . This will store each single field part of the as a multiValue MultiValueTransformer Transformer MultiField

property (Basically a JCR multiValue property represented a a Typed List property).

i18n

All default implementation support the i18n definition.Transformer

If for example you have two language defined ('en', 'de') with 'en' set as default language:

Node name Value

 formNode

 simpleText Simple English Text

 simpleText_de Einfache deutsche Text

 multiValueText English1,English2,English3

 multiValueText_de Deutsche1,Deutsche2

If you want to create your own implementation of that support i18n, your implementation will need to:Transformer

return for true .hasI18NSupport() Transformer

implement a compatible Magnolia i18n logic.

Default Value

ConfiguredFieldDefinition.defaultValue contains the String representation of the default value.

The default value is only showed the first time the related form is displayed.

This behavior is only supported by . basic field

Implemented

Property
A field needs to be linked to a property as data source. The value of the property is used to store the value entered/selected by the user on the field.
In Magnolia 5.1, every field are bound to a property that support called .Transformer TransformedProperty

This property is initialized with the configured and set to the field as datasource by the .Transformer FieldFactory

A ConfiguredField is linked to a . TransformedProperty<T>

TransformedProperty<T> is initialized with a .Transformer

TransformedProperty<T> extend .ObjectProperty<T>

value T : Transformer.readFromItem()
T : Transformer.getType()

The has the responsibility to retrieve the initial value and to set the property class type.Transformer

TransformedProperty<T> may be of any type. For a TextField configured to handle Long (), the ConfiguredFieldDefinition.type = Long <T>

will be of type .Long

For complexer Field (Multi, Composite) the is of type . This let the complex field easily handle multi property.<T> PropertysetItem

Implemented Transformer

BasicTransformer

The linked to a field is retrieved and stored based on the Field's property defined in the field .property name definition

A new is created in case id does not yet exist.property

As are typed, the created will be of the type defined by the property named coming from the field . (property property type definition type=D

 the property will be a). Default type is ate Date Object String

If the property is defined in the field , this value will be converted to the appropriate and assigned to the newly defaultValue definition type

created . Otherwise the property will have a value.property null

If the related field support a language suffix is added to the name:i18n property

For example, a field is called ' ' and has support for . Default language is ' 'simpleText 'en, de, fr' en

http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-BasicField
http://documentation.magnolia-cms.com/display/DOCS/Common+field+properties
http://documentation.magnolia-cms.com/display/DOCS/Common+field+properties
http://documentation.magnolia-cms.com/display/DOCS/Common+field+properties

Node name Value

 simpleText Simple English Text

 simpleText_de Einfache deutsche Text

 simpleText_fr Simple text en francais

CompositeTransformer

In addition to the and default , we provide an additional CompositeField SwitchableField Transformer :Transformer

NoOpCompositeTransformer

NoOpCompositeTransformer is useful if you want to combine a Multi filed storing individual field value into sub nodes with composite field as Multi field
component.

In this case, the Multi field will read/write the Item structure and pass a properties as to the Transformer PropertysetItem NoOpCompositeTransfo

. This just act as a property container.rmer Transformer

MultiTransformer

MultiValueTransformer

This is the default set for Multi value fields. The fields values are stored in a . This is then automatically Transformer LinkedList<T> LinkedList<T>

convert to a JCR multi-value-property once it is persisted.
 This will only work for simple fields like text/date/radio...

MultiValueJSONTransformer

Transformer storing the fields values as a with ',' as separator.String

 This will only work for simple fields like text/date/radio... and values are stored as .String

MultiValueChildrenNodeTransformer

Transformer storing the fields values in sub item property: (Equivalent Jcr Structure of the form Item)

Node name Element name Value

 formNode

 00 Incremental child node name

 multi Multi field name Typed value in the First field

 01 Incremental child node name

 multi Multi field name Typed value in the Second field

 02 Incremental child node name

 multi Multi field name Typed value in the Third field

MultiValueSubChildrenNodePropertiesTransformer

Transformer storing each field values into a sub Item. Equivalent to but this is able to MultiValueChildrenNodeTransformer Transformer

handle multiple values. Based on the previous example:NoOpCompositeTransformer

Node name Element name Value

 formNode

 multi Multi field name

 00 Incremental child node name

 text Text field name composing the
Composite field

Typed value in the Text field

 date Date field name composing the
Composite field

Selected date

 select Select field name composing
the
Composite field

Selected selection

 01 Incremental child node name

 text Text field name composing the
Composite field

Typed value in the Text field

 date Date field name composing the
Composite field

Selected date

 select Select field name composing
the
Composite field

Selected selection

 02 Incremental child node name

 text Text field name composing the
Composite field

Typed value in the Text field

 date Date field name composing the
Composite field

Selected date

 select Select field name composing
the
Composite field

Selected selection

MultiValueSubChildrenNodeTransformer

Transformer creating first a child node (named as the multi field) and storing the fields values in sub node property (equivalent to MultiValueChildre
) :nNodeTransformer

Node name Element name Value

http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-MultiValueChildrenNodeTransformer
http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-NoOpCompositeTransformer
http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-MultiValueChildrenNodeTransformer
http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-MultiValueChildrenNodeTransformer

 formNode

 multi Multi field name

 038a2c75-2638-48e6-a Incremental child node name

 multi Multi field name 038a2c75-2638-48e6-a6ba-9bd2a9fe6c78

 72e2ef55-6c11-4b0e-8 Incremental child node name

 multi Multi field name 72e2ef55-6c11-4b0e-8e02-d47c4ad41083

 11bbf78b-4ecf-4e9f-a Incremental child node name

 multi Multi field name 11bbf78b-4ecf-4e9f-a06e-6181ef56d98c

	Concept - Property Transformer

