Concept - Property Transformer

® |ntroduction
® Basic Concept
® Configuration
® Default behavior
® Basic Field
® Composite Fields
® CompositeField
® SwitchableField
® Multi-Value Field
® MultiField
® i18n
® Default Value
® Implemented
® Property
® |mplemented Transformer
® BasicTransformer
® CompositeTransformer
® NoOpCompositeTransformer
® MultiTransformer
MultiValueTransformer
MultiValueJSONTransformer
MultiValueChildrenNodeTransformer
MultiValueSubChildrenNodePropertiesTransformer
MultiValueSubChildrenNodeTransformer

Introduction

Magnolia 5.1 introduce a new way to handle properties bound to a dialog field. Until Magnolia 5.1 the only way to modify the default behavior (a field is
bound to a simple property) was to override the Fi el dBui | der. get Or Creat eProperty(.. method.

Now by configuration we have the possibility to define custom way to read and write a value or values from a property linked to a field. This is us full for
complex fields like Mul ti Val ueFi el d or Conposi t eFi el d that needs more than one simple property bound to them.

Basic Concept
AField islinked to a Property used to store the field value. This Property :

® s set by the Fi el dBui | der based on the passed | t em.

® has a name and a value.
® name of the property is generally the name used to store the property
® value contains the user input.

In other words a field has a property, this property has a value.

Field

Field

— Property (has a name and a value)

— T getValue() : done during Initializatien
—— setValue(T value) - done during changes or on save

Property

The field property is normally simply linked to an Item property. Let's take a simple example. Assume that we have a Form displaying five fields. The
following schema display the Jcr representation (1), his equivalent ltem representation (2) (used in Magnolia Ul and also to build the form) and the form
view (3).

@ [tem First Name Alex

ilily

. property (T: String)
aPietry (node) name: firstName
. firstName (property:String) value: 'Alex’ Last Name Pietry
'Alex! . property (T:String)
. lastName (property:Strin name: lastName
'Pietry’ (property o value: ‘Pietry' Age E
. age (property:Number) . property (T : Number)
25 name. age Birthday E
. birthdayDate (property Date) value: 25
05/05/1988 . property (T Date)
. genre (property:String) name: birthdayDate Genre
m value: 05/05/1988
. property (T: String)
name. genre
value: m Save Cancel

@, ®

. prope_rty (T: String) TextField
name: firstName

value: 'Alex’

Field Definition

class : TextFieldClass
name: firstName
type: String

A form is build by the form builder using the ltem (2). Each individual form field are build by the field builder. This builder used the field definition (that
contains the field class, name,...) and the related item property to create an individual field.

In the previous example, (2.1) the field definition says that we have to create a field of type Text that has a value coming from a property called 'firstName'.
The field builder, request from the Item (2) the property 'firstName'. It create a text field, a new property set as property datasource of the field, and
associate the value of (2.1) to this property datasource (3.1).

1. The transformation dome between (1) and (2) is performed by the Actions (Open Dialog action and Save Dialog action). All changes done in the item (2)
will be propagated to the Jcr structure once a user click to the save button (adding/removing/changing a property, or adding a sub item,)

1. Until Magnolia 5.1, the transformation between (2) and (3) was a 1:1 translation, meaning that the individual fields where directly accessing the Item.
Now Magnolia 5.1 introduce a new layer between (2) and (3) allowing to perform complexer mapping. This layer is called Transformer.

Assume that we have a new requirement regarding our form example: The ltem (2) stay the same, but the form should only display one text field
containing the full name (first and last name) . This is now possible by defining a Tr ansf or mer Gl ass property on the Field Definition:

Field Definition
class: TextFieldClass

name: fullMame
transformerClass : FullNameTransformer

. property (T-String) .
name: firstName TextField

value: Alex FProperty

. property (T-String) .
name: lastName < » FullName Transformer
value: Pietry Value

In this case, the field builder will create a Tr ansf or medPr oper t y as field property datasource. This Tr ansf or nedPr oper t y delegate to the Tr ansf or
mer the get and set value field calls.

Another good example for illustrating the Tr ansf or ner behavior is the Mul ti Val ueFi el d. The the related field Pr oper t y can no more be a simple Pr
operty but rather a complex property containing several values. This property is a Pr opertyset | tent (a Property containing several Property).

Item (form root Item)

Sub Item {multi value sub
tem)
property (T-date)

name: dateField MultiValueField

value: 09/10/2012
Date Property 1

Sub Item

. property (T:date
I::m:ﬂe:: ;a((eFieId) I MultiValueField I

value: 11/10/2012

Sub Item PropertyltemSet
. property (T.date) Transformer
name: dateField
value: 10/10/2012 @ O
Item (form root Item) ‘Add

property (Array T-date)
name: dateField

oartor2012_ | B
Date Property 2] 1/10/2012 E
10/10/2012 E

values: 09/10/2012, 11/10/2012 | 10/10/2012

Item (form root Item)
property (T-String)
name: dateField
value: "09/10/2012, 11/10/2012 | 10/10/2012"

The previous mockup display a Date multi value field (3). This field is associated to a Propertyset | t ent that contains the individual Date Pr operty.
This property delegate the read and write to a Tr ansf or mer (1) This Tr ansf or mer knows how to read and write the individual Date Pr operty from
and to the related form item. In this example the Tr ansf or mer is bound to an Item property of type list. This introduce another big advantage of the Tr ans

f or mer's. For the same field it is possible to define several read/write strategy:
Store the field values into a single array, or into sub items, ...

Configuration

This configurations are done in the common fields Properties.

Property Description Default
value

transf ormer G ass = Concrete implementation of i nf 0. magnol i a. ui . form fi el d. transforner. Transf or mer <T>.
Optional.
If not defined, i nf o. magnol i a. ui.formfield.transforner. basic.Basi cTransforner<T>is

used.
1. ComplexeFieldDefinition may define default Tr ansf or ner in their constructor.

Default behavior

Basic Field

By default, basic fields (Textm Date, Checkbox,...) uses Basi cTr ansf or ner .
The field is created based on the related form | t em Basi cTr ansf or ner will:

® Retrieve the | t em property if this property already exist on the | t em
property is search based on the Field name defined as name property on the field definition.
® Createtheltem property if this property do not yet exist on the | t em
property is created based on the following field definition:
® type: property will get the desired t ype
® def aul t Val ue: if define, the string representation of the default field value is converted to a new t yped val ue.

Composite Fields
Composite Tr ansf or mer (Conposi t eTransfornmer Swi t chabl eTr ansf or mer) are used by the following fields:

® ConpositeField
® Switchabl eFiel d

ConpositeField

Valid
values

This field use by default the Conposi t eTr ansf or ner . This Tr ansf or mer will store each single field part of the Conposi t eFi el d as single suffixed
property.

Assume that your Conposi t eFi el d is called 'composite' and contains two fields: a text field called 'simpleText and a date field called 'simpleDate'.
The values will be stored as following:

Node name Value
compositesimpleText some text value

compositesimpleDate 2006-05-01T21:47:58.230+02:00

Swi t chabl eFi el d

This field used by default the Swi t chabl eTr ansf or ner . This Tr ansf or mer will store each single field part of the Swi t chabl eFi el d as single
suffixed property.

Assume that your Swi t chabl eFi el d is called 'switchable' and contains two fields: a text field called 'simpleTexf and a date field called 'simpleDate'.
The values will be stored as following:

Node name Value
switchable text (last tab selected)
switchablesimpleText some text value

switchablesimpleDate 2006-05-01T21:47:58.230+02:00

Multi-Value Field

Multi-Value Tr ansf or mer are used by the following field:
® MiltiField

Mul ti Fiel d

This field is by default bound with Mul ti Val ueTr ansf or ner . This Tr ansf or ner will store each single field part of the Mul ti Fi el d as a multiValue
property (Basically a JCR multiValue property represented a a Typed List property).

i18n

All default Tr ansf or ner implementation support the i18n definition.
If for example you have two language defined (‘en’, 'de') with 'en' set as default language:

Node name Value

formNode
simpleText Simple English Text
simpleText_de Einfache deutsche Text
multiValueText English1,English2,English3

multiValueText_de Deutsche1,Deutsche2

If you want to create your own implementation of Tr ansf or mer that support i18n, your implementation will need to:

® returntrue for Tr ansf or mer . hasl 18NSupport ()
® implement a compatible Magnolia i18n logic.

Default Value

Confi gur edFi el dDef i ni ti on. def aul t Val ue contains the String representation of the default value.

The default value is only showed the first time the related form is displayed.

This behavior is only supported by basic field .

Implemented

Property

A field needs to be linked to a property as data source. The value of the property is used to store the value entered/selected by the user on the field.
In Magnolia 5.1, every field are bound to a property that support Tr ansf or ner called Tr ansf or medPr operty.
This property is initialized with the configured Tr ansf or mer and set to the field as datasource by the Fi el dFact ory.

Property
(Vaadin)
Field -
Simple (Date, Text) Obﬁ.‘::;:_ﬁerw
Custom (Composite, Multi)

Transformer<T= TransformedProperty<T>
T readFromltem() T getValue()
writeToltem(T) " setValue(T)

Class<T> getType()

A ConfiguredField is linked to a Tr ansf or medPr oper t y<T>.
® TransformedProperty<T> is initialized with a Tr ansf or nmer .
Transf or medPr opert y<T> extend Obj ect Property<T>.

® value T:Transforner.readFromtemn()
® T:Transforner.get Type()

The Tr ansf or mer has the responsibility to retrieve the initial value and to set the property class type.

Transf or medPr opert y<T> may be of any type. For a TextField configured to handle Long (Conf i gur edFi el dDefi ni ti on.type = Long), the <T>
will be of type Long.
For complexer Field (Multi, Composite) the <T> is of type Pr oper t yset | t em. This let the complex field easily handle multi property.

Implemented Transformer

Basi cTr ansf or ner

The property linked to a field is retrieved and stored based on the Field's property nane defined in the field definition.
A new property is created in case id does not yet exist.

® Asproperty are typed, the created pr opert y will be of the type defined by the property named t ype coming from the field definition. (t ype=D
at e the property will be a Dat e Obj ect). Default type is St ri ng

® |f the property def aul t Val ue is defined in the field definition, this value will be converted to the appropriate t ype and assigned to the newly
created pr oper t y. Otherwise the property will have a nul | value.

If the related field support i 18n a language suffix is added to the pr oper t y name:
For example, a field is called 'simpleText and has support for ‘en, de, fr'. Default language is 'en'

http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-BasicField
http://documentation.magnolia-cms.com/display/DOCS/Common+field+properties
http://documentation.magnolia-cms.com/display/DOCS/Common+field+properties
http://documentation.magnolia-cms.com/display/DOCS/Common+field+properties

Node name Value
simpleText Simple English Text
simpleText_de Einfache deutsche Text

simpleText_fr Simple text en francais

Conposi t eTransf or mer
In addition to the Conposi t eFi el d and Swi t chabl eFi el d default Tr ansf or mer , we provide an additional Tr ansf or ner :

NoQpConposi t eTr ansf or ner

NoOpConposi t eTr ansf or mer is useful if you want to combine a Multi filed storing individual field value into sub nodes with composite field as Multi field
component.

= Multi Field
— Composit Field (1) Root Node (Form Node)
. - multiFieldSubMNode
LText Field I I_ I I E Select Field u @ compositeFieldChildNode1
textFieldProperty
- Composit Field (2) dateFieldProperty
" - selectFieldProperty
[TextFed] [7/] E Select Fieid [w] | compositeFieldChildNode2
textFieldProperty
- Compeosit Field (3) dateFieldProperty
. 1 selectFieldPropert
[TextFed) | 7/] E Select Feld [w] | compositeFeldChidNoded
textFieldProperty
dateFieldProperty
Add selectFieldProperty

In this case, the Multi field Tr ansf or mer will read/write the Item structure and pass a properties as Pr oper t yset | t emto the NoOpConposi t eTr ansf o
rer . This Tr ansf or ner just act as a property container.

Mul ti Tr ansf or ner

Mul ti Val ueTr ansf or mer

This is the default Tr ansf or mer set for Multi value fields. The fields values are stored in a Li nkedLi st <T>. This Li nkedLi st <T> is then automatically
convert to a JCR multi-value-property once it is persisted.
1. This will only work for simple fields like text/date/radio...

Mul ti Val ueJSONTr ansf or mer

Tr ansf or mer storing the fields values as a St ri ng with ',' as separator.
1. This will only work for simple fields like text/date/radio... and values are stored as St ri ng.

Mul ti Val ueChi | dr enNodeTr ansf or ner

Transf or mer storing the fields values in sub item property: (Equivalent Jcr Structure of the form Item)

Node name Element name Value
formNode
00 Incremental child node name

multi Multi field name Typed value in the First field

01 Incremental child node name

multi Multi field name Typed value in the Second field
02 Incremental child node name
multi Multi field name Typed value in the Third field

Mul ti Val ueSubChi | dr enNodePr operti esTransf or mer

Tr ansf or mer storing each field values into a sub Item. Equivalent to Mul t i Val ueChi | dr enNodeTr ansf or ner but this Tr ansf or mer is able to
handle multiple values. Based on the previous NoOpConposi t eTr ansf or mer example:

Node name Element name Value
formNode
multi Multi field name
00 Incremental child node name
text Text field name composing the Typed value in the Text field
Composite field
date Date field name composing the Selected date
Composite field
select Select field name composing Selected selection
the
Composite field
01 Incremental child node name
text Text field name composing the Typed value in the Text field
Composite field
date Date field name composing the Selected date
Composite field
select Select field name composing Selected selection
the
Composite field
02 Incremental child node name
text Text field name composing the Typed value in the Text field
Composite field
date Date field name composing the Selected date
Composite field
select Select field name composing Selected selection

Mul ti Val ueSubChi | dr enNodeTr ansf or mer

Transf or mer creating first a child node (named as the multi field) and storing the fields values in sub node property (equivalent to Mul ti Val ueChi | dre

the
Composite field

nNodeTr ansf ormer):

Node name

Element name

Value

http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-MultiValueChildrenNodeTransformer
http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-NoOpCompositeTransformer
http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-MultiValueChildrenNodeTransformer
http://wiki.magnolia-cms.com/display/DEV/Concept+-+Property+Transformer#Concept-PropertyTransformer-MultiValueChildrenNodeTransformer

formNode

multi

038a2c75-2638-48e6-a

multi

72e2ef55-6¢11-4b0e-8

multi

11bbf78b-4ecf-4e9f-a

multi

Multi field name

Incremental child node name

Multi field name

Incremental child node name

Multi field name

Incremental child node name

Multi field name

038a2c75-2638-48e6-ab6ba-9bd2a9fe6c78

72e2ef55-6¢11-4b0e-8e02-d47c4ad41083

11bbf78b-4ecf-4e9f-a06e-6181ef56d98¢

	Concept - Property Transformer

